Installation- / Monitoring technique

VARIMETER
Fuse Monitor
RL 9075, RN 9075

Product Description

The fuse monitors RL 9075 and RN 9075 of the varimeter series monitor up to 3 fuses. The measurement is very simple and without extensive wiring, as no separate auxiliary supply is necessary. The fast detection of a defective fuse protects against expensive damages and the user has the benefit of high operational performance and availability of the plant.

Function Diagram

3-phase connetion to monitor 3 fuses

Circuit Diagram

Your Advantages

- Increasing the availability of plants by early detection of blown fuses, that may cause damage if undetected
- Fast detection of blown fuses also with disconnected load availability of your plant on request
- Reliable detection of blown fuses inspite of:
- asymmetric mains
- harmonic content

Features

- According to IEC/EN 60 255-1
- To monitor fuses in single and 3-phase AC voltage systems with neutral
- Adjustable operating voltages: $400 \mathrm{~V} / 230 \mathrm{~V}$ and 230 V / 130 V and 110 V / 64V
- Undervoltage detection below $0.8 \times \mathrm{U}_{\mathrm{B}}$
- Fast detection of a blown fuse
- No separate auxiliary necessary
- Output: 1 changeover contact
- De-energized on trip
- Adjustable switching delay
- Width:
- RL 9075: 35 mm
- RN 9075: 52.5 mm

Approvals and Markings

Application

Monitors the state of 1-3 fuses in single- or 3-phase voltage systems with neutral, e.g. for automatic disconnection and lockout in the case of a fuse failure.

Indication

green LED "ON":
red LED „L1, L2, L3":

on, when supply connected

shows that the voltage is dropped under $0.8 \times U_{B}$ after the fuse which indicates a blown fuse

Connection Terminals
Terminal designation Signal designation L1 Phase voltage L1 L2 Phase voltage L2 L3 Phase voltage L3 N Neutral $11,12,14$ Changeover contacts (outputrelays)

Function

When monitoring fuses in a 3-phase system all the phases are measured against N . The recognition of a blown fuse is done by monitoring the voltage at the fuse input terminals L1, L2 and L3. A voltage drop on one of these input terminals below $0.8 \times U_{B}$ is an indication for a blown fuse. In case an undervoltage condition on any of the three terminals has been recognized the LED of the corresponding terminal starts blinking red. After the switching delay time has expired, the LED switches on red continuously. At the same time the relay, which works in open circuit alarm mode, switches its state. After the terminal voltage exceeds the switching level again e.g. by replacing the blown fuse, the corresponding LED immediately turns off and at the same time the relay switches back into idle mode.

When monitoring fuses in a 1-phase system, up to 3 fuses can be connected to the same phase and being monitored.

If less than 3 fuses are monitored at 3 - or single-phase monitoring, the unused terminals LX have to be bridged (see connection examples).

Via rotary switch the both operating ranges $400 \mathrm{~V} / 230 \mathrm{~V}$ or $230 \mathrm{~V} / 130 \mathrm{~V}$ at RN 9075 can be selected. At RL 9075 the operating voltage is fixed.

Notes

During initialisation the fuse monitor recognises the mains frequency (50 Hz or 60 Hz).

For reliable detection of fuse failure with large inductive loads we recommend to have symmetric loads.
When using the fuse monitor with motor loads it could happen, due to feedback voltage, that the failed fuse is only detected after the motor is switched off.

Adjustable operating voltages via rotary swich:

Device	Function Lx/N	Voltages $\mathbf{0 . 8} \mathbf{x ~ L x} / \mathbf{N}$
RN 9075	230 V	184 V
	130 V	104 V
RL 9075	-	51 V

Technical Data

Input

Operating voltage U_{B} :

RL 9075:

RN 9075:

Voltage rated operating \mathbf{U}_{e} :
RL 9075:
RN 9075:
Voltage range:
RL 9075:
RN 9075:
Nominal frequency:
Frequency range:
Nominal consumption:
Output

Contacts:

Contact material:
Switching voltage:
Thermal current I_{th} :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to $A C 15$ at $1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$: short circuit strength
max. fuse rating:
Mechanical life:

3/N AC 77 ... $121 \mathrm{~V} / 44$... 70 V
1- or 3-phase without / with neutral 3/N AC 138 ... 440 V / 78 ... 253 V
1- or 3-phase without / with neutral
3/N AC $90 \ldots 110 \mathrm{~V} / 52 \ldots 64 \mathrm{~V}$
3/N AC 162 ... $400 \mathrm{~V} / 92$... 230 V
$0.7 \ldots 1.1 U_{B}$
$0.6 \ldots 1.1 \mathrm{U}_{\mathrm{B}}$
$50 / 60 \mathrm{~Hz}$
$45 \ldots 65 \mathrm{~Hz}$
approx. 7 VA

1 changeover contact
AgNi
AC 250 V
5 A
$\begin{array}{ll}3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} & \text { IEC/EN } 60 \text { 947-5-1 } \\ 1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} & \text { IEC/EN } 60 \text { 947-5-1 }\end{array}$
typ. $\times 10^{5}$ switching cyles
IEC/EN 60 947-5-1
5 AgL
$>30 \times 10^{6}$ switching cyles

Technical Data

Measuring circuit

Monitoring voltage

RL 9075:
RN 9075

Monitoring range:

RL 9075:
RN 9075:
Nomber of monitored
fuse:
Switching delay t_{v} :
Repeat accuracy:
Temperature influence:
$\mathrm{Lx} / \mathrm{N}=51 \mathrm{~V}(0.8 \times 64 \mathrm{~V})$
$L x / \mathrm{N}=184 \mathrm{~V}(0.8 \times 230 \mathrm{~V})+$
$\mathrm{Lx} / \mathrm{N}=104 \mathrm{~V}(0.8 \times 130 \mathrm{~V})$
$0.7 \ldots 1.1 U_{B}$
$0.6 \ldots 1.1 U_{B}^{B}$
1 .. 3
infinite adjustable
instantaneuos, $2 \ldots 30 \mathrm{~s}$
± 2 \%
$\pm 1 \%$

General Data

Operating mode:

Temperature range

Operation:
Storage:
Relative air humidity:

Altitude:

Clearance and creepage

distances

Rated impuls voltage/

Pollution degree

EMC
Electrostatic discharge (ESD): 8 kV (air) HF irradiation
$80 \mathrm{MHz} . .1 \mathrm{GHz}$:
$1 \mathrm{GHz} \ldots 2,7 \mathrm{GHz}$:
Fast transients:
Surge
between
wires for power supply:
between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Enclosure:

Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection:
Fixed screw terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Fixed
High-voltage terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
RL 9075:
RN 9075:

Dimensions

Width x height x depth:
RL 9075:
RN 9075:
continuous operation
$-20 \ldots+55^{\circ} \mathrm{C}$
$-25 \ldots+60^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
<2,000 m

6 kV / 2
IEC 60 664-1
IEC/EN 61 000-4-2
$12 \mathrm{~V} / \mathrm{m}$
IEC/EN 61 000-4-3
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$2 \mathrm{kV} \quad$ IEC/EN 61 000-4-4

2 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
10 V
EN 55011
IP 40
IEC/EN 60529
IEC/EN 60529
Thermoplastic with V0 behaviour
acc. to UL subject 94
Amplitude $0,35 \mathrm{~mm}$
Class I
IEC/EN 60 255-21
20 / 055 / 04
EN 50005
IEC/EN 60 068-1
DIN 46 228-1/-2/-3/-4
$0.2 \ldots 4 \mathrm{~mm}^{2}$ (AWG 24-12) solid or
$0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (AWG $24-12$)
stranded wire with and without ferrules 7 mm
0.6 Nm

EN 60 999-1
Captive slotted screw / M2.5
0.2 ... $6 \mathrm{~mm}^{2}$ (AWG 24-10) massiv oder
$0.2 \ldots 4 \mathrm{~mm}^{2}$ (AWG $24-10$)
stranded wire without ferrules
0.25 ... $4 \mathrm{~mm}^{2}$ (AWG 24-10)
stranded wire with ferrules
8 mm
0.7 Nm EN 60 999-1

Captive slotted screw / M3
DIN rail
IEC/EN 60715
approx. 105 g
approx. 125 g

UL-Data

ANSI/UL 60947-1, $5^{\text {th }}$ Edition
ANSI/UL 60947-5-1, $3^{\text {rd }}$ Edition
CAN/CSA-C22.2 No. 60947-1-13, $2^{\text {nd }}$ Edition
CAN/CSA-C22.2 No. 60947-5-1-14, $1^{\text {st }}$ Edition

Switching capacity:

Wire connection
RL 9075:
RN 9075
for terminals 11, 12, 14 for terminals L1, L2, L3, N:

Pilot duty B300
5A 240Vac Resistive, G.P. 5A 30Vdc Resistive or G.P 5A 250Vac G.P.
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 24-12 Sol/Str Torque 0.6 Nm

AWG 24-12 Sol/Str Torque 0.6 Nm AWG 30-10 Sol/Str Torque 0.7 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section

Standard Types

RL 9075.11 3/N AC $110 \mathrm{~V} / 64 \mathrm{~V} \quad 0 . .30 \mathrm{~s}$
Article number: 0066880

- Output: 1 changeover contact
- Operating voltage: 3/N AC 110 V / 64 V
- Switching delay:

0 ... 30 s

- Width:

35 mm
RN 9075.11 3/N AC $230 \mathrm{~V} / 130 \mathrm{~V}+3 / \mathrm{N}$ AC $400 \mathrm{~V} / 230 \mathrm{~V} \quad 0 \ldots 30 \mathrm{~s}$ Article number:

- Output: 0066928
- Operating voltage:

1 changeover contact

- Switching delay:
$3 / \mathrm{N}$ AC $230 \mathrm{~V} / 130 \mathrm{~V}+3 / \mathrm{N}$ AC $400 \mathrm{~V} / 230 \mathrm{~V}$
- Width:

0 ... 30 s
$52,5 \mathrm{~mm}$

Ordering Examples

Connection Examples

3-phase connection to monitor 3 fuses

1-phase connection to monitor 2 fuses

